Mayur — DB Specialist@Veeam
When Autovacuum
Met FinOps: A
Cloud Romance

It Only Happens in the I\/Iowes

P L~

Typical DBA/DEV Complaints

»"Autovacuum used to fly on bare-metal, but in the cloud, it
feels like it's dragging forever!"

*"I've doubled the max_autovacuum_workers, yet dead
tuples just keep stacking up"

« "Every time Autovacuum kicks in on that big table, our
application queries start timing out!"

Limits

* Autovacuum throughput is constrained by the
autovacuum_vacuum_cost_limit,
autovacuum_vacuum_cost_delay and further limited by host
restrictions on Cloud.

*Before we delve into tuning Autovacuum, we need some
metrics at hand. Autovacuum is known for being
I/O-intensive, but just how much strain does it place on
your system? Let's explore.

Calculations

#AtT most, an autovacuum can do IO as shown below.

Max Autovacuum throughput =
1000/autovacuum_vacuum_cost_delay) *

autovacuum_vacuum_cost_limit/vacuum_cost_page_hit) * 8
KB (default block_size)

#For PG17 default settings:

Max Autovacuum throughput = (1000/2) * (200/1) * 8 KB =
800MB per second

Instance and Storage both limit throughput

adWws (e : o b .
5 re:Post Q Search questions, knowledge-center, articles, topics,

Home

i}

Questions Knowledge Center Articles Selections More...

ACCEPTED ANSWER

Hi @nikos64,

The volume and instance limits are separate{The throughput bottleneck

will be dependent on whic is reach first.

For example :

e 1/ A db.r6g.8xlarge instance with limit of 1125 MB/s with 1(single)
gp2 volume attached to it, will have a 250 MB/s throughput limit.

Standard instance class : General purpose standard instances of latest
graviton series offer better throughput upto 2.5GBps.
Gbps/Mbps here is in Bits hence division by 8 to get GB/s or MB/s.

I n Sta n Ce Dedicated EBS
Model vCPU Storage

Bandwidth (Gbps)

throughput K.

db.m7g.xlarge EBS-Only Upto 10

[] []
| I m It db.m7g.2xlarge EBS-Only Upto 10

db.m7g.4xlarge - : EBS-Only Upto 10

db.m7g.8xlarge - EBS-Only 10

db.m7g.12xlarge - EBS-Only 15

db.m7g.16xlarge - EBS-Only 20

“Up to" is a very vague term. | found another piece of the puzzle in AWS

document.
Instance type Baseline / Baseline / Maximum Baseline / EBS
Maximum throughput (MB/s, 128 Maximum IOPS optimization e
I n n bandwidth (Mbps) KiB 1/0) (16 KiB 1/0)
m7g.medium 315.00 7/ 10000.00 39.38 / 1250.00 2500.00 / y default
40000.00
m7g.large 630.00 / 10000.00 78.75 / 1250.00 3600.00 / v default
t ro u | I t 40000.00
m7g.xlarge 1250.00 / 156.25 / 1250.00 6000.00 / v default
10000.00 40000.00

m7g.2xlarge ! 2500.00 / 312.50 / 1250.00 12000.00 / v default

[] []
I m I t 10000.00 40000.00
5000.00 / 625.00 / 1250.00 20000.00 / 4 default
e

® Note
These instances can support maximum crfornmncc for 30 minutes at least once every 24 hours, after which they revert to

their baseline performance. Other instances can sustain the maximum performance indefinitely. If your workload requires

sustained maximum performance for longer than 30 minutes, use one of these instances.

Since maximum performance is guaranteed for only 30 minutes per day, we
will focus only on baseline values.

o2 :

e Throughput scales proportionally up to 0.256 MiB/s per
provisioned IOPS. Maximum throughput of 4,000 MiB/s can be
achieved at 256,000 IOPS with a 16-KiB 1/0 size and 16,000 IOPS

or higher with a 256-KiB |/O size. For DB instances not based on
Sto ra ge the AWS Nitro System, maximum throughput of 2,000 MiB/s can
be achieved at 128,000 IOPS with a 16-KiB 1/0 size.

t h ro u g h p u t For io2 we can reach up to 500MB/s as we crank up iops knob.
limit

16,000 IOPS yields max 256,000 IOPS yields max
throughput of 4,000 MiB/s throughput of 4,000 MiB/s

Throughput at 16 KiB 1/0 size

s Throughput at 256 KiB 1/0 size

1000

Max. throughput (MiB/s)

Provisioned I0PS

Instance class m7g.4xlarge (baseline is 625MB/s), Storage io2 256000 iops

1 instance(s) x 1.348 USD hourly x (100 / 100 Utilized/Month) x 730 hours in a month = 984.0400 USD
Amazon RDS PostgreSQL instances cost (monthly): 984.04 USD

St O ra g e Amazon RDS PostgreSQL instances cost (upfront): 0.00 USD
t h ro u g h p u t v Show calculations

[] []

| I m I t Storage amount: 1 TB x 1024 GB in a TB = 1024 GB

1,024 GB per month x 0.125 USD x 1 instances = 128.00 USD (Storage Cost)

256,000 Provisioned IOPS 102 x 0.10 USD x 1 instances = 25,600.00 USD (IOPS 102 Cost)
128.00 USD + 25,600.00 USD = 25,728.00 USD

Storage pricing (monthly): 25,728.00 USD

holy IOPS!! 26K for 1TB

Don't worry GP3 saves the day.

v Show calculations

< P 3 Storage amount: 1 TBx 1024 GBina TB = 1024 GB

16,000 iops / 1,024 GB = 15.63 IOPS to GB ratio (gp3)
4,000 MiBps / 16,000 iops = 0.25 IOPS to Throughput ratio

1,024 GB per month x 0.115 USD x 1 instances = 117.76 USD (Storage Cost)
16,000 IOPS - 12000 free GP3 iops = 4,000 billable gp3 iops
4,000 MiBps - 500 MiBps free throughput = 3,500 MiBps billable throughput

4,000 IOPS x 0.02 USD = 80.00 USD
3,500 MiBps x 0.08 USD = 280.00 USD

117.76 USD + 80.00 USD + 280.00 USD = 477.76 USD
Storage pricing (monthly): 477.76 USD

Estimate summary info

Total 12 months cost

0.00 USD ,461.80 USD ']7,54’]60 usbD

Includes upfront cost

Min. Config for 500MB/s throughput, 1TB db

GLUUD

FIN-OPS EXPERT
Why should ‘
you
understand
costs?
WHY DID YOU PUT
DISKS ON 102 DURING
CYBER BLACK FRIDAY AND

INCREASE OUR BILL BY $232

Juggling Cost,
Autovacuum
Efficiency, and
Application
Performance

The Low Hanging Fruit -- memory

autovacuum_work _mem = LEAST

(Total Memory — (shared_buffers + session_memory + reserve_memory) 1 C‘B)
— TS, — — — ——_— — — —TTTTTTTTTTT x

autovacuum workers

Example:

Total Memory = 64 GB

shared_buffers = 16 GB (25% of Total Memory)

work_mem = 32 MB

active_sessions =100

idle_sessions = 500 (assume poorly configured connection pool for more
realistic calculations)

idle_session_memory = 10 MB per idle connection

autovacuum_workers = 6

session_memory =(active_sessions*work_mem*hash_mem_multiplier)+
(idle_sessions*idle_session_memory)

Reserve OS Memory = Reserve 20% of Total Memory
autovacuum_work_mem = LEAST(3.9667GB,1GB) =1GB

Reason for autovacuum_work_mem 1GB restriction

postgres / src / include / utils / memutils.h

Code Blame 209 lines (179 loc) - 6.99 KB

* compute twice an allocation’'s size without overflow.

lefine MaxAllocSize ((Size) ex3fffffff) /* 1 gigabyte - 1 */

What is the problem?

[

Autovacuum on large table

v

Autovacuum running too Autovacuum doesn't clean
causes application query
B long dead tuples
timeout

l

Does host (compute & Does host (compute &

v

Are there long-running
storage) have enough storage) have enough

throughput capacity to throughput capacity for
cover both AV and App? both AV and App?

Ny TR ’ l

transaclions or abandoned

replication slots?

v l v v

Increase host throughput Calculate host throughput Increase autovacuum cost Increase host throughput Remove long-running Not enough autovacuum
or dial down autovacuum mathematically and check limit; for large tables, apply capacity and crank up transactions or replication workers or do large tables
cost limit again at table level autovacuum cost limit slots occupy workers?

v v
Does it solve the issue? & Does this solve the issue?

R

Increase aulovacuum
workers, ensure host
Yes, solved! , solved! , solved! .
capacity, and set cost limit
properly

\
\. /

«

= Consider partitioning, Calculate host throughput

Enjoy! dropping unused indexes. Enjoy! mathematically and check Enjoy!
or query oplimizalion again

Budget constraints = Think creatively

 Consider partitioning problematic tables, Size of data and indexes
reduces.

 Detect and drop unused indexes (since PG vacuums all indexes).
* Minimize long-running transactions (lower wasteful vacuum runs).

« If it still impacts application performance, you may need to dial back
cost limit and delay.

 Always implement an Early Warning System for TXID wraparound
(AWS offers on this).

* Last but not the least, upgrade to PG17 for improved vacuuming.

https://aws.amazon.com/blogs/database/implement-an-early-warning-system-for-transaction-id-wraparound-in-amazon-rds-for-postgresql/

John Lennon was
a Postgres DBA

m Am'rwmen BUTITS O

References:

https://www.percona.com/blog/tuning-autovacuum-in-postgresaql-and-autovacuum-internals/

https://calculator.aws/#/

https://azure.microsoft.com/en-us/pricing/details/postgresql/flexible-server

https://cloud.google.com/sql/docs/postgres/pricing

Database Comedy Blog

Mayuresh B.

Database Specialist @ Veeam
Software | Databases, RDBMS, ...

