
When Autovacuum
Met FinOps: A
Cloud Romance

Mayur – DB Specialist@Veeam

It Only Happens in the Movies

Typical DBA/DEV Complaints

• "Autovacuum used to fly on bare-metal, but in the cloud, it
feels like it's dragging forever!“

• "I've doubled the max_autovacuum_workers, yet dead
tuples just keep stacking up“

• "Every time Autovacuum kicks in on that big table, our
application queries start timing out!"

Limits

•Autovacuum throughput is constrained by the
autovacuum_vacuum_cost_limit,
autovacuum_vacuum_cost_delay and further limited by host
restrictions on Cloud.

•Before we delve into tuning Autovacuum, we need some
metrics at hand. Autovacuum is known for being
I/O-intensive, but just how much strain does it place on
your system? Let's explore.

Calculations

#At most, an autovacuum can do IO as shown below.
Max Autovacuum throughput =
(1000/autovacuum_vacuum_cost_delay) *
(autovacuum_vacuum_cost_limit/vacuum_cost_page_hit) * 8
KB (default block_size)

#For PG17 default settings:
Max Autovacuum throughput = (1000/2) * (200/1) * 8 KB =
800MB per second

Instance and Storage both limit throughput

Instance
throughput
limit

Instance
throughput
limit

Storage
throughput
limit

Storage
throughput
limit

GP3
saves the
day

Min. Config for 500MB/s throughput, 1TB db

Cloud Storage (all SSDs but
taking only cost-efficient
type)

Compute (Instance class) Monthly Cost (in
US-East)

AZURE
(Azure Database for
PostgreSQL — Flexible
Server)

Premium SSD (5K iops for
500MB/s)

D16ds_v5 $1407

AWS
(Amazon RDS – Postgres)

GP3 (16K iops minimum
for 500MB/s)

m7g.4xlarge $1462

GCP
(Cloud SQL – Postgres)

Zonal extreme-pd N2 VM with 64 vCPUs $2383

Why should
you
understand
costs?

Juggling Cost,
Autovacuum
Efficiency, and
Application
Performance

The Low Hanging Fruit -- memory

Reason for autovacuum_work_mem 1GB restriction

Budget constraints = Think creatively

• Consider partitioning problematic tables, Size of data and indexes
reduces.

• Detect and drop unused indexes (since PG vacuums all indexes).
• Minimize long-running transactions (lower wasteful vacuum runs).
• If it still impacts application performance, you may need to dial back

cost limit and delay.
• Always implement an Early Warning System for TXID wraparound

(AWS offers a detailed guide on this).
• Last but not the least, upgrade to PG17 for improved vacuuming.

https://aws.amazon.com/blogs/database/implement-an-early-warning-system-for-transaction-id-wraparound-in-amazon-rds-for-postgresql/

Thank you

Database Comedy Blog

