
Spot VMs and Postgres

Kaarel Moppel

Freelance PostgreSQL Consultant

pgug.ee #8

http://pgug.ee

$ whoami
● Full-time “wrestling” with databases since 2007
● 20K+ hours in the Postgres ecosystem
● Have developed a pretty good gut feeling of what works

reasonably well for some purpose and what not
● Up for:

○ Performance troubleshooting & tuning
○ HA setups / replication
○ Security / operational auditing
○ Backup / recovery procedures
○ Monitoring
○ Migrations
○ Trainings
○ Tooling development

Talking points
● Deploying Postgres
● Spot VMs intro
● Managed vs K8s vs self-rolled
● Deployment options and considerations
● An example Postgres-specific Spot implementation

Postgres, postgres, postgres

● Local Docker / testcontainers
○ The best way if persistence not needed

● Instance sharing - can work well up to a point (no security or perf considerations)
● A fully managed cloud service a la Amazon RDS or similar

○ Tooling support is generally pretty nice

● K8s - works pretty well nowadays
○ A lot of choice though. Might actually want* a support contract
○ Need to watch out perf-wise on fully managed K8s

● Serverless? Definitely an upcoming thing! (Neon, Xata, Aurora Serverless, …)
○ Allows coolness like data branching + HTTP access among other things

● Rolling your own 🥳

Common Postgres deployment options

When to use what
Due to vast differences in exact objectives, data size, criticality, branch
duration, etc…it’s pretty much impossible to derive a rule of thumb :/

Some recommendations though can be made when optimizing for one
key aspect only:

● Resource utilization / cost > K8s
● Standardization / deployability > K8s
● Criticality > Fully managed
● Short lifetime > Serverless
● Customization / exotic extensions* > Self-managed
● Performance > Self-managed or Fully managed on autoscale ($$$)

A cost / performance example
Managed RDS vs self-managed for this 4 CPU / 32 GB RAM configuration has a ~4x
“bang-for-buck” difference! Thanks to much faster locally attached (yes, volatile) disks…

* Tested: a standard (pgbench) random read-only use case on a 200GB dataset, 10K TPS
vs 20K TPS, price $456 vs $224.

Spot instances!
● Idling compute capacity

○ Supported on all top 3 clouds*
● Low cost

○ On average 3-5x savings compared to On-Demand
○ 3yr RIs only give ~2x

● No guarantees obviously
○ Can capture a 30s termination notice though before the rugpull

● Dynamic pricing - fluctuates based on demand
○ Huge differences between regions and even AZs!

● Best for non-critical or fault-tolerant applications
○ Web crawling, ETL jobs, queue processing, CI/CD, …

● “Some” eviction rate data available to utilize Spot more succesfully

Massive cost-savings potential

A cost / performance example v2 - with Spot
Managed RDS vs self-managed Spot VM for a 4 CPU / 32 GB RAM configuration has a
~10x “bang-for-buck” difference!

The savings potential for larger companies with dozens of DBs* is just huge!

Spot is actually not “that” scary
If to use the Spot Instance advisor tool by AWS

Meaning - on average, one can
expect to run a few months
uninterrupted!

https://aws.amazon.com/ec2/spot/instance-advisor/

Spot for DBs?
● Based on my experience from the past years - works

surprisingly well!
○ For short-termish (some months) or non-critical use cases at least…

● My general recommendations learnt along the way:
○ Use the eviction rate data
○ Prefer instance storage for incredible perf per dollar
○ Be flexible with regions and AZs
○ Avoid the lowest SKUs and burstable instance types
○ Time-box everything, retry if something takes suspiciously long
○ Watch out for defaults - e.g. getting a public IP, GCP “Preemptible”
○ No need to specify a max price anymore

Spot for DBs - deployment options

● Managed K8s (EKS, GKE, AKS) with Spot node groups
○ If to hand-pick instance types and add some extra configuration

to make poper use of instance storage
● Managed ECS with Spot

○ Very limited storage options
● Self-managed

○ Docker
○ Custom AMIs with batteries included
○ Standard VM-style via Ansible etc

https://aws.amazon.com/tutorials/amazon-eks-with-spot-instances/
https://cloud.google.com/kubernetes-engine/docs/concepts/spot-vms
https://learn.microsoft.com/en-us/azure/aks/spot-node-pool
https://aws.amazon.com/blogs/containers/eks-persistent-volumes-for-instance-store/
https://aws.amazon.com/ec2/spot/containers-for-less/get-started/

Spot for DBs - a K8s example
● All 3 clouds allow running Spot node pools, à la:

$ eksctl create cluster --spot --instance-types=c3.large,c4.large,c5.large

● A solid option for small to medium DBs, given some Postgres
is always running and if to hand-pick the instances types and
also keep them updated!
○ As prices and eviction rates are always changing …

Self-managing Spot VMs?
PROS

● Zero up-front $$ investment
● Minimal up-front setup, VMs are low-level building blocks
● Unbeatable savings (managed K8s fixed to a region)
● Perfect hardware isolation and matching for the given task, every time

○ K8s + Karpenter can work to an extent also here
● No K8s knowledge needed

CONS

● Longer start / recovery times (similar to non-HA RDS though)
○ Resolve HW, check prices, wait for boot, install packages*

● No K8s
○ The custom glue can get messy of course…
○ Security side needs separate setup / review

Self-managed Spot VMs in practice
Wouldn’t it be nice though if someone else deals with the
annoying details?

1. Looks for the cheapest VMs matching our requirements
2. Sets up tuned Postgres, users, databases, extensions and just

gives us the connect string
3. Auto-discards the instance in x minutes/hours

From my own needs and experimenting grew out something
like…

PG Spot Operator - available on PyPI + Docker
psql "$(pg_spot_operator --region=eu-north-1 --ram-min=64 --storage-min=500 \

 --storage-type=local --tuning-profile=analytics --instance-name=mypg1 \

 --admin-user=pgspotops --admin-user-password=topsecret123 --connstr-output-only)"

…

INFO Current Spot discount rate in AZ eu-north-1a: -75.5% (spot $126.6 vs on-demand $516.2)

…

psql (16.4 (Ubuntu 16.4-1.pgdg24.04+2))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off)

Type "help" for help.

pgspotops@postgres=> * Assumes a local AWS CLI setup

~6x savings
compared

to RDS!

PG Spot Operator highlights
● One-liner Postgres at unbeatable price / performance
● Human-friendly HW specification
● Doesn’t rely on any other company infra by design
● Also for long-term workloads if 99.99% class uptime not needed
● Shines especially with data heavier workloads
● Can be used for anything really in --vm-only / --connstr-output-only mode
● A more polished commercial version in designing

○ Hybrid provisioning - use Spot only when DT budget allows
○ All top 3 clouds
○ Super-regions for even more savings
○ …

“UI” - CLI / Docker params or a “manifest”
--check-price doesn’t need AWS creds!

pg_spot_operator \
 --check-price \
 --region eu-north-1 \
 --ram-min 128

docker run --rm \
 -e PGSO_CHECK_PRICE=y \
 -e PGSO_REGION=eu-west-1 \
 -e PGSO_RAM_MIN=128 \
 -e PGSO_STORAGE_TYPE=local \
 -e PGSO_STORAGE_MIN=200 \
 pgspotops/pg-spot-operator:latest

github.com/pg-spot-ops/pg-spot-operator

The codes

Licence: Functional Source License, Version 1.1,
Apache 2.0 Future License

Status: Working Beta - any kind of feedback (or
just a ⭐) very much appreciated! 🙏

https://github.com/pg-spot-ops/pg-spot-operator

Thank you!

kaarel.moppel@gmail.com

https://www.linkedin.com/in/kaarelmoppel/

https://kmoppel.github.io/

SLIDES

mailto:kaarel.moppel@gmail.com
https://www.linkedin.com/in/kaarelmoppel/
https://kmoppel.github.io/

