
©
C

O
G

N
IT

E
20

22

Cloudy database
management - no
problems at all?

Kaarel Moppel, Cognite
PGUG.EE January 2023 meetup

● Full-time “fighting” with databases for the last 15 years
● Since 2011 with Postgres, with 5 years of that as a consultant

○ Thus I've gotten a pretty unique insight into architectural / tooling
decisions of dozens of companies and have a pretty good
understanding of what works reasonably well and what not

● Principal DBRE at Cognite where we build an Industrial
DataOps product with all the modern buzzwords covered (AI,
Digital twins, Knowledge graphs, …)
○ Currently we have around 300 primary instances of Postgres +

hundreds of other non-relational instances (FoundationDB, Kafka,
Elastic)

Meet the presenter

https://www.cognite.com/en/
https://www.cognite.com/en/product/cognite_data_fusion_industrial_dataops_platform

Agenda

● Managed databases overview, pros and cons
● Typical DB-related DevOps tooling
● Newer trends

Managed Databases high-level overview

In short - should be your default choice for all relational storage
needs, where one doesn't need to scale like crazy

● And I mean "crazy", as Postgres has quite some tricks up its
sleeve

Relational database = Postgres of course ;)

+ =

● No way around managed databases for scale-ups
○ They do solve many problems for us to focus on other things
○ Very difficult to hire DB engineers

So…welcome to the managed Cloud!

● Well, don’t have to think about DB infrastructure anymore - it becomes a
guaranteed service with a SLA!

● Some things become really hard to screw up
○ The initial provisioning part - a one-liner on the CLI basically
○ High-Availability / automatic failover is another “checkbox”
○ Backups
○ Most essential tuning flags set to match the SKU

■ Workload agnostic still(*)

● Can scale easily if to throw $$ at the problem
○ Not talking only about standard SKU++ here - there also some quite high-performance

wire-compatible derivatives available (the likes of Azure Cosmos DB, AlloyDB, Aurora)
● Don’t need to know any engine internals (initially), can just jump to SQL /

business logic!

* AlloyDB brings something to the table here

Managed DB infrastructure PROS

● $$ - easily 2-3x the cost of plain VMs with database self-installed (*)
○ Even more if to add HA (*)
○ Some obnoxious cloud providers don’t even lay out the price for you in the UI
○ Extra sad fact of the matter - developers generally have no good understanding of

future performance needs (especially if using some ORM-s etc, so that test
benchmarking is hard) and thus commonly just over-provision

○ On some clouds there are some ways to reduce costs a bit though (VM suspend,
auto-scaling based on load) if load is not constant

● Very slow or “just” slow disk access for low / medium tier SKUs
○ IOPS tied to SKU size and / or volume size in most cases
○ Some clouds provide guaranteed IOPS for $++ as a remedy

● Debugging is super hard, if it should come down to that (and it eventually will*)
○ Some clouds are clearly better than others when it comes to contacting the

“helpdesk”

Managed DB infrastructure CONS

● Point-in-Time and normal Disaster Recovery (*)
● AD / IAM authentication and authorization integration

○ Both for control and SQL plane
○ VPC only SQL access option

● Auto-updates to minor versions
● Alerting integration (on some clouds)
● Auditing for most important instance lifecycle actions

DB domain specifics - well SOLVED themes

● Lacking metrics - very basic / generic insight on DB internals on most
clouds

○ Need to roll your own custom layer still for larger organizations
○ Sometimes just to solve the access problem i.e. to make metrics public

● Provider side config tuning at very basic level
○ Need engine-specific knowledge
○ A lot of settings even can’t be set for no good reason (*)

● Basic perf problem detection / solving (Top X slowest SQL mostly)
○ For background processes etc still need to have someone with engine knowledge

● Major version upgrades require manual attention
○ And they take a lot more downtime than necessary, compared to "on-prem"

● Access security management lacking mostly
○ Only few clouds support client certificates
○ Looking at HBA rules leaves you guessing most of the time
○ Brute-force protection not activated on most clouds, even if world open 🤯

DB domain specifics - partially or NOT SOLVED themes

● For Postgres - very limited selection of “extensions” are allowed
○ From “super-extensions” PostGIS is the only one universally supported
○ TimescaleDB only on few and lagging in versions

● Instance lifecycle events tracking suffers often from “selective memory”
● Restrictive server log search and long term archival options (*)

○ Logging options (log_line_prefix) not tunable at all on most clouds
● In addition to operator configuration / tuning mistakes, providers also take

“interesting” defaults sometimes (like synchronous_commit=off)
● Obviously no 100% guarantees also against provider side mishaps /

downtimes. Some problems we’ve faced during last 1.5yrs:
○ Collations FU on minor update
○ Subnet IP caching / depletion
○ Too active API saturation / throttling
○ Storage auto-scale fragmentation penalty
○ + some more …

DB domain specifics - partially or NOT SOLVED themes

● Which to take?
○ Well, generally the one which you're already using…
○ Up to 50% perf differences on comparable SKUs

● What if you’re going multi-cloud?
○ Many simple things become problematic now…there are always differences not

only in API but also concepts / naming
○ Given you're on the same Cloud + Region, could also use meta-providers!

■ Like aiven.io e.g.
■ Get nicer API / UX usually

● Postgres or Postgres-compatible? Or Serverless?
○ Aurora
○ Neon
○ bit.io

Another “problem” - Wow, so many clouds…

https://aiven.io/
https://aws.amazon.com/rds/aurora/serverless/
https://neon.tech/
https://bit.io/

DevOps and Cloud DBs

Handling the most essential DB lifecycle events like initial provisioning
● Lots of choice
● A few no-brainers like Terraform and Ansible

Larger shops will often discover though that there are lot more DB-specific
tasks to handle / automate in a repeatable manner:
● Tools for evolving the DB schema in a VC way

○ Flyway, Liquibase, …
● DB clones for cheap feature testing / development
● Cloning prod data to staging with anonymization / obfuscation
● Unified metrics / logging analysing experience
● Regular failover, DR and chaos-testing
● Automated data lineage tracking
● Postgres specific maintenance (bloat reduction, reindexing)
● …

DevOps - DB-related tooling needs

The most common tool for essential DB-lifecycle management

PROS
● A very popular choice for Cloud in general

○ Thus a relatively safe bet also for DB management
● Good development / rollout tooling support
● Top tier DB modules maintained by cloud provider directly or use some

code generation from API specs
○ i.e. relatively short delays to support new cloud features / APIs
○ Can just look at the Cloud provider API documentation for available

attribute values etc

DevOps tooling - Terraform

CONS
● Lacking imperative actions and full Postgres lifecycle support
● Copy-Paste templates can / will become a problem for hundreds of instances

○ Some unnecessary stuff will start to make rounds
● Some danger of “versioning hell” - hard to evolve root modules without cryptic

errors / manual state-file modifications for already running stuff
○ Results in outdated settings for most already provisioned instances
○ Note that it’s even debatable if it’s a good idea to “backfill” e.g. apply new tuning settings

● Not a state machine per se, configuration drift can occur on manual overrides
○ Due to incident handling mostly - needs discipline from DevOps / Incident teams!

So in short - take existing tooling as "something", but be open to mix & match,
and prepared for going "manual" for certain actions still

DevOps tooling - Terraform

How it's used at Cognite in DB space

● "Root" module and a sample “intermediary” module maintained by DB
engineers, project “intermediary” and rollout modules by teams
○ Root - best practice tuning, backup, HA settings + some company specifics,

e.g. store logins in a certain space, monitoring, schema default privileges
○ Intermediary modules - project specific changes + naming / tag changes
○ Rollout modules - mostly a clone stamp from “intermediary” for some env X

● Devs copy-paste and replace, create a PR, get initial "plan" errors if any
○ Relying on Atlantis here

● Gets peer / DBRE reviewed depending on project, devs roll out
○ Some transient errors are possible still, re-plan / re-apply first

Terraform at Cognite

https://github.com/runatlantis/atlantis

Sad fact of life - the bigger you scale, the less an average dev knows /
sees / cares about databases. Some remedies:

● Documentation for devs - just the right amount, and not too tribal
● Take as many "sane default" decisions as possible as a technology expert
● Knowledge sharing

○ These topics can be “looped” eternally basically as new devs onboard
■ Effective indexing
■ Partitioning
■ Testing your queries properly (*)

● Testdata generation + EXPLAIN ANALYZE
○ A “Postgres guild” with monthly presentations to tackle that at Cognite

● “One size fits” alerting thresholds generally won’t work - must be easily
configurable, team-driven and owned

Things that can't be automated / DevOps-ed away

Next level of DevOps

Next level of DevOps = no “Ops” at all, just “Dev” :)

● Meaning “Turtles K8s all the way down”
○ Abstracting away the infrastructure
○ Well, for developers at least

● Apps getting deployed in a fully declarative, platform-agnostic way,
including the databases!

● That model doesn’t match well though with managed databases,
because they’re still external to K8s.

● Need to choose:
○ Install / run DBs directly in K8s in a semi-managed way
○ Or intermediate somehow between K8s and the Cloud

● Should be only used for some specific needs(*) or for those who want more
control over all tuning setting or need a true “superuser”
○ Doesn’t guarantee any automatic performance improvement, especially on

managed K8s
○ Good for saving some $$ though

● Need to choose an operator - for Postgres:
○ https://github.com/CrunchyData/postgres-operator 3K (Github stars)
○ https://github.com/zalando/postgres-operator 2.9K
○ https://github.com/cloudnative-pg/cloudnative-pg <1K
○ https://github.com/ongres/stackgres <1K
○ https://github.com/percona/percona-postgresql-operator <1K
○ …

● NB! You’re now basically on your own with non-standard events!
○ Consider getting also some support contract for (possible) problems

Semi-managed Postgres on K8s

https://github.com/CrunchyData/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/ongres/stackgres
https://github.com/percona/percona-postgresql-operator

● Need to choose some “operator of external resources” layer
○ We experimented with Crossplane, but didn't work out for us

■ There are a few others like movetokube/postgres-operator
○ All clouds will start to look the same:

apiVersion: database.example.org/v1alpha1
kind: PostgreSQLInstance
metadata:
 name: my-db
 namespace: default
spec:
 parameters:
 storageGB: 20
 compositionSelector:
 matchLabels:
 provider: gcp
 writeConnectionSecretToRef:
 name: db-conn

K8s intermediated managed Postgres

https://github.com/crossplane/crossplane
https://github.com/movetokube/postgres-operator

● Internal Developer Platforms (IDP) are all the rage nowadays
○ A “self-service”, API or some configuration language (K8s CRD-s) that already knows about

your environment and aims to simplify developer friction basically to zero
○ Not possible to simplify 100% of requirements of course, aim for Pareto / golden path

● That’s what we at Cognite actually see as a long-term solution and are building one
○ Not a particularly easy or cheap undertaking though - be warned :)
○ A K8s Custom Resource looks something like that then:

apiVersion: infra.cognite.ai/v1alpha1
kind: CdfService
metadata:
 name: kaarel-test-db1
 namespace: app-1
 labels:
 team: devtooling
spec:
 postgresdb:
 enabled: true

Another alternative - build your own IDP!

Wrap-up

● Managed databases are not a silver bullet by far - solves just a part of the
equation

Key takeaways

● Managed databases are not a silver bullet by far - solves just the
infrastructure part of the equation

● Large organizations will hit some limitations of managed services sooner
or later - test (performance) thoroughly and have a backup plan in place
○ For example test how to migrate off your chosen cloud provider or product -

some providers make it harder than necessary

Key takeaways

● Managed databases are not a silver bullet by far - solves just a part of the
equation

● Large organizations will hit some limitations of managed services sooner
or later - test (performance) thoroughly and have a backup plan in place
○ For example test how to migrate off your chosen cloud provider or product -

some providers make it harder than necessary
● Most popular DevOps tools “per design” don’t cover the whole lifecycle

○ Forget the idea of a "single tool to rule em' all" as you get bigger
○ Need to combine a few and be prepared to go "manual" for certain actions
○ A custom control-plane / IDP can be a better solution

Key takeaways

● Managed databases are not a silver bullet by far - solves just a part of the
equation

● Large organizations will hit some limitations of managed services sooner
or later - test (performance) thoroughly and have a backup plan in place
○ For example test how to migrate off your chosen cloud provider or product -

some providers make it harder than necessary
● Most popular DevOps tools “per design” don’t cover the whole lifecycle

○ Forget the idea of a "single tool to rule em' all" as you get bigger
○ Need to combine a few and be prepared to go "manual" for certain actions
○ A custom control-plane / IDP can be a better solution

● Need to have a few competent people onboard still - we’re not as far yet
as one might think with managed DB offerings and DevOps tooling
○ As databases really are inherently special with their “annoying” lifecycle and

service criticality

Key takeaways

©
C

O
G

N
IT

E
20

22

